Homework 9

Due March 21st on paper at the beginning of class. Please let me know if you have a question or find a mistake. There are some hints on the second page.

1. (a) Let u and φ be C^{2} near $[a, b]$. Use integration by parts to derive a formula for $\int_{a}^{b} \varphi u^{\prime \prime}-u \varphi^{\prime \prime}$ analogous to Green's second identity (Theorem 2.11).
(b) Use this and a good choice of φ to prove a version of the mean value formula (Theorem $9.3)$ with $B\left(x_{0} ; R\right)$ replaced by $[-1,1]$.
(c) You don't have to hand anything in for this but you may enjoy thinking about what is the equivalent of Corollary 9.4.
2. Borthwick Exercise 9.2.

Hints:

1. For part (b) use $\varphi(x)=|x|-1$. For part (c) note that a one-dimensional ball is an interval, and its boundary consists of two points. The 'integral' of a function f over a pair of points p and q is $f(p)+f(q)$.
2. This is an expanded version of a classic proof with no equations: https://www.ams.org/ journals/proc/1961-012-06/S0002-9939-1961-0259149-4/S0002-9939-1961-0259149-4. pdf.

Here is a picture of the balls $B(0, R)$ and $B\left(x_{0} ; R\right)$. The point is that they get closer and closer to coinciding as $R \rightarrow \infty$.

